A Survey of Javascript Thought

Frameworks

Knowledge

People, Podasts, and News

Tools

Careers

Windows Forms Eventing: Generic Pub/Sub

In my lastpost, I covered how you can implement a publish/subscribe system for sending eventsbetween components of your Windows Forms application. Using this model, it is easyto create separate components that don’t rely on each other’s implementation detailsin order to provide a consistent experience for the user. A button on the toolbarcan be disabled by an action on the data entry screen…without hard references betweenthe two.

However, the implementation from last time required a new aggregator and set of interfacesfor each message type that needed to be passed around. Let’s fix that with generics.

Listener Interface

First we replace the IEventReciever interface from last time with a generic IListenerinterface that uses a generic type for the message object.

public interface IListener<T>{void Handle(T message);}
All your subscribers now implement an IListener<Message> for each messagetype they can handle. (This is great because one class can listen for multiple typesof messages!)

Event Aggregator Interface

Similarly, the Event Aggregator needs a generics reset. Notice that the Add and Removemethods now accept any old object.

public interface IEventAggregator{void SendMessage<T>(T message);void AddListener(object listener);void RemoveListener(object listener);}

Event Aggregator

public class EventAggregator: IEventAggregator{private readonly List<object>listeners = new List<object>();#region IEventAggregator Memberspublic void SendMessage<T>(Tmessage){listeners.CallOnEach<IListener<T>>(x => { x.Handle(message); });}public void AddListener(object listener){if (listeners.Contains(listener)) return;listeners.Add(listener);}public void RemoveListener(object listener){listeners.Remove(listener);}#endregion}

Not much new here….except for that CallOnEach method. Where did that come from?

Extension Methods

We need to add a few utility methods to the IEnumerables so that we can send our messages:

public static void CallOnEach<T>(this IEnumerableenumerable, Action<T> action) where T : class{foreach (object o in enumerable){o.CallOn(action);}}public static void CallOn<T>(this object target,Action<T> action) where T : class{var subject = target as T;if (subject != null){action(subject);}}

Put those in a likely static class somewhere.

Are we there yet?

This Event Aggregator is getting powerful. We should kill it before it develops languageskills.

With the code we have so far, we can easily create a new message in the system withoutmodifying the aggregator code. I like adding the methods as child classes of theirreceivers (when they are receiver-specific).

There is, however, still a problem. In the type of application that needs this eventingsystem, you are likely going to need to do some background threading to keep the UIresponsive. The Event Aggregator we have doesn’t do anything to keep itself or therest of the application synchronized.

What happens when a background thread sends a message that the receiver needs to acton by talking to the UI thread? Do you write a bunch of Invoke() code everywhere?

As it turns out, there is a better way. And my next post will show you how to upgradeyour EventAggregator to be the thread master!

Windows Forms Eventing: Adding Pub/Sub

In my lastpost, I described the creeping problem I’ve been having with wiring my large WindowsForms application up with EventHandler delegates. In short, the design becomes brittle—it’shard to write and hard to change. Luckily, the solution is an easy one: Publish/Subscribe.

The Event Aggregator is a singleton. You can either manage this yourself, or you canhave your Inversion of Control container do it for you. When an Event Receiver iscreated, it registers itself with the Event Aggregator, which stores a reference tothe receiver. When a Event Sender sends a message to the Event Aggregator, the aggregatorloops through all the registered receivers and calls a method on them to handle theevent. This is facilitated by having the receivers implementing an interface. Here’sa simple implementation:

public class EventMessage{public string MessageText{ get; set; }}public interface IEventReceiver{void Handle(EventMessage message);}public interface IEventAggregator{void SendMessage(EventMessage message);void AddReceiver(IEventReceiver receiver);void RemoveReceiver(IEventReceiver receiver);}public class EventAggregator: IEventAggregator{private readonly List<IEventReceiver>receivers = new List<IEventReceiver>();#region IEventAggregator Memberspublic void SendMessage(EventMessagemessage){receivers.ForEach(r => r.Handle(message));}public void AddReceiver(IEventReceiverreceiver){if (receivers.Contains(receiver)) return;receivers.Add(receiver);}public void RemoveReceiver(IEventReceiverreceiver){receivers.Remove(receiver);}#endregion}public class EventReceiver: IEventReceiver{public EventReceiver(IEventAggregator aggregator){aggregator.AddReceiver(this);}#region IEventReceiver Memberspublic void Handle(EventMessagemessage){Console.WriteLine(message.MessageText);}#endregion}public class EventSender{private IEventAggregator aggregator;public EventSender(IEventAggregator aggregator){this.aggregator = aggregator;}public void SendErrorMessage(string message){aggregator.SendMessage(new EventMessage { MessageText= message });}}

This is a big improvement over manual event wiring through an application. No longerdo the targets of a message need to know (have references to) the senders of the messagein order to make the connection. You can add a new target (receiver) without changingthe code of the sender. You can add a new sender without changing the code of thereceivers. And you don’t have to manually map things out in some sort of registryclass. This is simple easy and it will work.

It’s always something with you, isn’t it?

Ok. I like it. I’m happy. But how many of these things am I going to have floatingaround? It seems like a lot of code to write to hand one type of event between somecomponents. I’m going to have to hire some Indian outsourcing company to write allof these singleton aggregators.

This sounds like a job for generics! My next post will rewrite the Event Aggregatorso that a single aggregator can handle every message your application has.

Windows Forms Eventing: The Problem

Anxiety. This is a feeling I’ve been learning to recognize as a SIGN when I’m coding.The feeling you get when the camera gets really close on the face of the pretty girlas she walks around the empty, and silent, house. Is she going to turn around suddenlyand be given flowers? Or is the disemboweling only moments away. You don’t know, butyou’re cringing either way.

I’ve felt this in the past about data access layers. This is the feeling I’ve beenaccumulating around my Windows Forms application lately. I don’t want to code. I’mafraid to code. It’s going to be painful. I’m not sure what’s going to go wrong. Butsomething will, and I’ll be sucked into the unproductive death pit.

Having spent a bit of time feeling around the problem, I’m pretty sure what I don’tlike is having to deal with events. Let’s take a look at the reason why:

Windows forms makes things easy.

Click click click! I have a button and I have an event linked to it. Amazingly productive.My app will be running in no time.

Event Handlers are teh awesome.

It’s so easy to link an action to an event handler. Well. It’s pretty easy. It’s veryeasy within one class. Not so bad if you’ve got a reference to the object that containsthe event handler. A little bit of encapsulation makes it harder. Chained event handlerscan fix that though……

All is happy with one form per task.

This form is easy. Add a few buttons and it’s great. If you’re prepared to make yourapplication out of a bunch of forms that the user will work with one-by-one, there’sno problem.

However….sovereign apps don’t look like that.

If the user is going to be in one application all day long, it will have to provideeasy access to a number of different types of functionality. The application can’tconsolidate all of the interface elements required for a single task into a singleplace. Rather there’s a spaghetti monster of functionality, reaching it’s noodleyappendages everywhere.

Events flying every which way, and everything needs a hard reference to everythingelse.

Can you actually wire all this up with EventHandler references? Sure. Of course youcan. However, you end with a lot of tightly coupled code that is a real mess to createand to maintain.

Hope. The eternal struggle.

A application shell is a complicated beast. But problems have solutions. In my nextpost, I’ll show how you can integrate all these separate components without stranglingyourself in wiring.

The Mystery of the Missing Permission

While writing Unit Tests for my membership provider code, I tried adding a permissionI had defined on one test user to a different test user. I was completely freakedout, since user1 suddenly no longer had that permission.

What kind of witchery is this? Does Collection<T>.Add() remove items from thesource collection?

No. It doesn’t. I tried it all with simple collections. List<string>.Add() doesn’thave this effect. So what’s going on?

The problem has to be in my persistence layer. My User and Permissions objects areprovided by LLBLGen. So it’s gotta be something in there. (A light dawns). I lookback at my table definitions. Sure enough, a permission as a m:1 relationship withit’s user. A permission entity can’t belong to more than one user. And LLBLGen issmart enough that when I take the object in the graph and add it to a different user,it not only updates the relationship(FK), but removes it from the original object.

But how do I get the result I wanted? A simple duplication of an existing permission?I adapted the deepcopy method I found over on Stack Overflow into a general extension method andused it to dupe the permission as I added it. Clean copy in the object graph=>nochanges to the relationship(FK)=>success.

public static class DeepCloneExtension{ public static TDeepClone<T>(this Tobj) { using (varms = new MemoryStream()){ var formatter = new BinaryFormatter();formatter.Serialize(ms, obj); ms.Position = 0; return (T)formatter.Deserialize(ms);} } }